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Abstract
Toxic chemicals from polluted seas can enter the human body through seafood consumption and cause health problems. The 
aim of this study was to evaluate the levels of selected heavy metals and trace elements among fishermen who frequently 
consumed seafood and controls who consumed seafood less frequently in four provinces on the shores of the Sea of Marmara, 
which is heavily polluted by industrial activities. Fourteen elements (antimony, arsenic, cadmium, chromium, copper, iron, 
lead, manganese, mercury, nickel, selenium, strontium, vanadium, and zinc) were analyzed in hair samples using the induc-
tively coupled plasma-mass spectrometer method. Levels of arsenic (0.147 ± 0.067 µg/g vs. 0.129 ± 0.070 µg/g, p = 0.025), 
chromium (0.327 ± 0.096 µg/g vs. 0.269 ± 0.116 µg/g, p < 0.01), nickel (0.469 ± 0.339 µg/g vs. 0.403 ± 0.368 µg/g, p = 0.015), 
strontium (1.987 ± 1.241 µg/g vs. 1.468 ± 1.190 µg/g, p < 0.01), and zinc (103.3 ± 43.1 µg/g vs. 92.7 ± 37.4 µg/g, p = 0.047) 
were higher in the fisherman group than in the control group. No difference was found between the groups in terms of other 
elements. The findings suggest that heavy metal-trace element contamination in the Sea of Marmara may increase the expo-
sure levels of individuals to some chemicals through seafood consumption.
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Introduction

Seafood is an important food source because it is rich in pro-
teins with high biological value, essential fatty acids, some 
vitamins, and minerals [1, 2]. Marine pollution has been 
increasing for a long time, and these pollutants potentially 
threaten marine life [3]. Accumulation of pollutants in the 
aquatic environment has become a global problem due to 
industrial expansion and affects life forms due to their strong 
bioaccumulation potential and toxicity [4]. Chemicals intro-
duced to receiving environments can be transported through 
the chain of phytoplankton–zooplankton–small fish–large 
fish [3, 5]. Humans who consume seafood living in these 
contaminated waters may experience increased heavy metal 
and trace element exposure due to bioaccumulation and 
biomagnification mechanisms and may face serious health 
problems [6, 7].

Some heavy metals and trace elements that are taken into 
the body through the consumption of seafood are essen-
tial for the continuation of human life and play important 
roles in various reactions in the human body (such as iron, 
zinc, and selenium). Some elements have no known role in 
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human physiology and can be toxic even at low levels (such 
as lead). However, even essential elements are known to be 
toxic above certain levels. It is therefore important that the 
concentrations of these substances taken into the body from 
various sources are within specific ranges [8].

Minamata disease was identified in 1956 with the occur-
rence of widespread neurological disorders, congenital 
diseases, and deaths due to the consumption of seafood 
containing high amounts of mercury caught from a gulf 
contaminated with mercury-containing industrial wastes for 
many years and is one of the most well-known examples of 
health problems caused by this way [9, 10]. Heavy metals 
such as arsenic and cadmium can also cause systemic toxic 
changes in the body and are classified as carcinogens by 
the International Agency for Research on Cancer [11–13]. 
Therefore, exposure due to frequent consumption of seafood 
living in waters contaminated with heavy metals and trace 
elements is a public health concern. Levels in hair samples 
can be used to assess past exposure to these elements [14, 
15].

In Turkey, a peninsula surrounded by sea on three sides, 
marine pollution has been increasing in recent years. The 
Sea of Marmara Sea has been polluted with various wastes, 
especially heavy metals, for many years due to the fact that 
it is an inland sea located in the region where the industry 
is densely clustered and which hosts a significant part of the 
country's population [16–20]. In 2018, 18.4 percent of the 
seafood caught in Turkey was caught in the Marmara region, 
which is equivalent to 52338 tons of seafood [21]. The 
effects of this pollution on seafood have been examined in 
studies, and arsenic, cadmium, lead, mercury, and zinc levels 
in different species of seafood caught in the Sea of Marmara 
were found to be above the safe upper limits [22–25]. In a 
study conducted as part of this project, the levels of arsenic, 
cadmium, chromium, and lead in seafood caught in the Sea 
of Marmara were found to be above permissible limits [26]. 
In two recent studies on various species of fish in the Sea 
of Marmara, the levels of many toxic metals were found to 
be above the safe limits [27, 28]. This makes it essential to 
investigate whether or not there is an increase in elemental 
levels in individuals consuming seafood in the region.

Research examining levels of trace elements and heavy 
metals in individuals who frequently consume seafood 
has focused on a few elements, particularly mercury [e.g., 
29–31]. Increasing environmental pollution of industrial 
origin and the growing spectrum thereof mean that a larger 
number of elements now require investigation [32]. The 
studies on this subject conducted in Turkey are also limited 
in number and cover three elements in total [33–35].

The aim of this study was to evaluate the levels of 14 
heavy metals and trace elements (antimony, arsenic, cad-
mium, chromium, chromium, copper, iron, lead, manganese, 
mercury, nickel, selenium, strontium, vanadium, and zinc) 

in hair samples collected from fishermen who frequently 
consumed seafood and a control group who consumed sea-
food less frequently in four provinces on the shores of the 
Sea of Marmara.

Materials and Methods

Study Design and Participants

This research is part of the “Heavy Metal-Trace Element 
Load and Risk Mapping in Sea Products and Fishermen” 
project conducted between July 2017 and August 2019. As 
part of this project, whole blood levels indicating recent 
exposure to various elements were evaluated in the previ-
ous article [36]. In this study, heavy metal and trace ele-
ment levels were analyzed in hair samples to assess chronic 
exposure. The study was carried out in the provinces of 
Istanbul, Kocaeli, Tekirdağ, and Yalova, all on the shores 
of the Sea of Marmara and heavily affected by industrial 
pollution (Fig. 1).

Fishermen who frequently consumed seafood they caught in 
the Sea of Marmara were selected as the experimental group. 
The inclusion criteria for the fishermen group were having been 
actively engaged in fishing for at least five years, being 25 years 
of age or older, being male and consuming seafood at least twice 
a week. The control group was established from among male 
individuals living in the same provinces as the fishermen and 
of similar age to them, not working in fishing and consuming 
seafood less than once every 15 days.

Raposo et al.’s study from Spain assessing the hair lev-
els of various elements was adopted as a reference study in 
calculating the sample size [37]. The reported hair mercury 
level in the normal population in this study was 5.38 mg/
kg. Estimating that the standard deviation for that value 
would be 20% and that hair mercury levels in fishermen 
would be approximately 10% higher than that value, inves-
tigation using Power and Precision Version 3.2.0 software 
with 80% power showed that at least 64 fishermen and 20 
controls would need to be included from each province. In 
order to establish contact with fishermen, cooperatives in the 
provinces of Istanbul, Kocaeli, Tekirdağ, and Yalova were 
visited, fishermen registered with these were interviewed, 
and the date and time of the field study were determined. 
Research commenced with the fishermen groups in the prov-
inces, after which controls of similar ages to the fishermen in 
the same provinces were selected. A total of 263 fishermen 
and 89 controls were included in the research.

Sampling and Analytical Methods

A questionnaire prepared by the authors was applied to the 
participants in the fishermen and control groups at face-to-face 

35Heavy Metal and Trace Element Levels in Hair Samples from Fishermen in Turkey: The Fish/Ermen…

0123456789)1 3



interviews, after which hair samples were collected. This con-
sisted of questions concerning participants’ various sociodemo-
graphic and personal characteristics, seafood consumption and 
the type, amount, period, and frequency of that consumption. 
Metal-free, ceramic scissors were used to collect the hair sam-
ples. Care was taken to ensure that there was no dye or hair-
spray on the hair. Samples were then collected from the occipital 
region as close to the scalp as possible, at a length of 1 cm, a 
diameter of 0.5 cm, and a weight of approximately 0.8–1.0 g. 
The collected hair samples were placed in lockable plastic bags 
and stored at − 18 °C until analysis.

Hair samples were first washed with distilled water 
for 15 min in an ultrasonic bath according to the method 
described by Rodushkin and Axelsson [38]. They were then 
washed again with acetone–water-water-water–acetone, 
placed in glass containers, and dried in an oven at 50 °C 
overnight. The samples were subsequently subjected to 
microwave digestion. For this purpose, 0.05 ml of 65% 
suprapure  HNO3 and 0.5 ml of 30% suprapure  H2O2 were 
added to 0.05 g hair samples placed in dry, clean teflon 
microwave chambers, digestion being performed under the 
conditions shown in Table 1. Samples removed from the 
device were allowed to cool to room temperature and then 

transferred to 15 ml Falcon tubes. Next, the samples were 
made ready for analysis on an ICP-MS device with the addi-
tion of ultrapure water for a final volume of 10 ml.

Laboratory analyses were carried out at the Zonguldak Bül-
ent Ecevit University Science and Technology Application and 
Research Center. Antimony (Sb), arsenic (As), cadmium (Cd), 
chromium (Cr), copper (Cu), iron (Fe), lead (Pb), manganese 
(Mn), mercury (Hg), nickel (Ni), selenium (Se), strontium (Sr), 
vanadium (V), and zinc (Zn) levels in the hair samples were 
measured using an inductively coupled plasma-mass spectrom-
eter (Perkin-Elmer, New York, USA). ICP-MS working condi-
tions were set at an RF power of 1000 W, a nebulizer gas flow 

Fig. 1  The Sea of Marmara 
and the provinces where the 
research was conducted

Table 1  Microwave device working conditions

Tempera-
ture (°C)

Pressure (bar) Increase 
speed (s)

Duration 
(min)

Power (W)

150 50 10 10 70
220 50 5 20 80
200 50 5 5 80
150 50 1 5 60
100 50 1 1 0
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rate of 0.99 ml/min, an auxiliary gas flow rate of 1.2 ml/min, a 
lens voltage of − 9.75 V, and an oxide rate of 0.021%. Internal 
calibrations of the device were performed using the appropri-
ate device setup solution and stock standards  (V51,  Cr52,  Mn55, 
 Fe56,  Ni60,  As75,  Cu63,  Zn66,  Se82,  Sr88,  Cd111,  Sb123,  Hg202, and 
 Pb208). Five-point calibration curves were used for element read-
ings. Two certificated reference materials were employed for the 
external calibration of the device (NCS DC73347a (GSH-1a) 
and NCS ZC 81002b [Beijing, China]). Sample preparation and 
analysis processes for both the samples and the reference mate-
rial were performed following the method described by Rodush-
kin and Axelsson [39]. All solutions and reactives in the experi-
ments were prepared with ultrapure water (18.3 MΩ-cm), while 
ultrapure nitric acid and hydrogen peroxide were employed in 
the sample preparation procedures. Results are based upon dry 
weight. The limit of detection (LOD) and limit of quantification 
(LOQ) values in hair are presented in Table 2.

Statistical Analysis

Statistical analyses were performed with SPSS 23.0 software. 
Descriptive statistics were expressed as mean (AM (arithmetic 
mean)), standard deviation (SD), minimum (min), and maxi-
mum (max) for quantitative variables and as number (n) and per-
centage (%) for qualitative variables. The Kolmogorov–Smirnov 
test and Shapiro–Wilk test were used to assess the normality of 
data distribution. Student’s t-test was used in the comparison of 
measurement variables between two independent groups when 
normal distribution conditions were met, while the Mann–Whit-
ney U test was used in case of nonnormal distribution. A chi-
square test was used to compare qualitative data between inde-
pendent groups. Spearman’s correlation test was used to evaluate 

correlations between measurement variables. The statistical sig-
nificance level was accepted as p < 0.05.

Ethics Approval and Consent to Participate

This study was performed in line with the principles of the 
Declaration of Helsinki. Approval was granted by the Bül-
ent Ecevit University Clinical Research Ethical Commit-
tee (Date 24 February 2016, no. 2016/04). The aims and 
scope of the study were explained to all participants. Written 
informed consent was obtained from individuals agreeing to 
participate prior to commencement. Participation was com-
pletely voluntary.

Results

352 people participated in the study, 263 in the fishermen group, 
and 89 in the control group. The mean consumption of seafood 
in the last month was 6234.6 ± 4856.3 g in the fishermen group 
and 363.5 ± 310.5 g in the control group (p < 0.001). Some soci-
odemographic and personal characteristics of fishermen and 
control groups are presented in Table 3.

Among the 14 heavy metals and trace elements meas-
ured in hair samples, arsenic, chromium, nickel, strontium, 
and zinc levels were significantly higher in the fishermen 
group than in the control group. The levels determined in 
the fishermen and control groups were 0.147 ± 0.067 µg/g 
and 0.129 ± 0.070  µg/g for arsenic (p  = 0.025), 
0.327 ± 0.096 µg/g and 0.269 ± 0.116 µg/g for chromium 
(p < 0.01), 0.469 ± 0.339 µg/g and 0.403 ± 0.368 µg/g for 
nickel (p = 0.015), 1.987 ± 1.241 µg/g and 1.468 ± 1.190 µg/g 
for strontium (p < 0.01), and 103.3 ± 43.1  µg/g and 
92.7 ± 37.4 µg/g for zinc (p = 0.047), respectively (Table 4 
and Fig. 2). No significant difference was observed between 
the groups in terms of antimony, cadmium, copper, iron, lead, 
manganese, mercury, selenium, or vanadium levels (Table 4).

The fishermen and control groups’ hair cadmium and 
nickel levels according to smoking status and hair mercury 
levels according to the presence of amalgam fillings are 
shown in Table 5. Hair cadmium levels of fishermen group 
and control group were found to be similar when consider-
ing nonsmokers/quitters (p = 0.396). Hair cadmium levels 
were similar between fishermen and controls who smoke 
(p = 0.249). Hair nickel levels of fishermen who do not 
smoke or quit smoking were found to be higher than con-
trols who do not smoke or quit smoking (p = 0.009). No dif-
ference in hair nickel levels was found between smoking 
fishermen and controls (p = 0.693). Hair mercury levels of 
both fishermen and controls without dental amalgam fill-
ings and fishermen and controls with dental amalgam fillings 
did not differ between the groups (p = 0.399 and p = 0.127, 
respectively) (Table 5).

Table 2  Limit of detection and limit of quantification values in hair

LOD limit of detection, LOQ limit of quantification

Element LOD (µg/g) LOQ (µg/g)

Antimony (Sb) 0.002 0.004
Arsenic (As) 0.01 0.02
Cadmium (Cd) 0.001 0.004
Chromium (Cr) 0.02 0.06
Copper (Cu) 0.01 0.03
Iron (Fe) 0.12 0.18
Lead (Pb) 0.02 0.07
Manganese (Mn) 0.001 0.008
Mercury (Hg) 0.003 0.007
Nickel (Ni) 0.01 0.016
Selenium (Se) 0.02 0.06
Strontium (Sr) 0.01 0.03
Vanadium (V) 0.006 0.01
Zinc (Zn) 0.02 0.09
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Correlations between participants’ seafood consumption 
and hair heavy metal/trace element levels were examined. 
Elements with significant correlation are shown in Table 6. 
Monthly seafood consumption was positively correlated 
with hair chromium, nickel, selenium, strontium, and zinc 
levels, while no correlation was determined with other ele-
ments (Table 6 and Fig. 3).

Discussion

This study employed a large panel to investigate whether fisher-
men who frequently consumed seafood in four provinces around 
the Sea of Marmara were exposed to an increased element load 
compared to controls who consumed smaller amounts of such 
foods. Arsenic, chromium, nickel, strontium, and zinc levels 

Table 3  Some 
sociodemographic and personal 
characteristics of fishermen and 
control groups

Characteristic Fishermen group (n = 263) Control group (n = 89) p

n % n %

Age (mean ± SD) 53.5 ± 13.3 52.0 ± 12.8 0.331
Marital status 0.384
   Married 215 81.7 77 86.5
   Single 48 18.3 12 13.5

Education  < 0.001
   Illiterate/literate 6 2.3 3 3.4
   Elementary school 126 47.9 29 32.6
   Middle school 48 18.3 5 5.6
   High school 63 24.0 16 18.0
   University and above 20 7.6 36 40.4

Smoking status  < 0.001
   Current smoker 163 62.0 37 41.6
   Quitter 60 22.8 23 25.8
   Nonsmoker 40 15.2 29 32.6

Amalgam tooth filling 0.694
   Yes 52 19.8 20 22.5
   No 211 80.2 69 77.5

Seafood consumption in the last 
month (g) (mean ± SD)

6234.6 ± 4856.3 363.5 ± 310.5  < 0.001

Table 4  Heavy metal and trace 
element levels in hair samples 
of fishermen and control groups 
(µg/g)

AM arithmetic mean, SD standard deviation

Element Fishermen (n = 263) Control (n = 89) p

AM SD min max AM SD min max

Antimony (Sb) 0.057 0.030 0.008 0.132 0.058 0.030 0.008 0.124 0.853
Arsenic (As) 0.147 0.067 0.023 0.308 0.129 0.070 0.024 0.288 0.025
Cadmium (Cd) 0.099 0.079 0.005 0.343 0.098 0.076 0.008 0.286 0.857
Chromium (Cr) 0.327 0.096 0.082 0.533 0.269 0.116 0.058 0.530  < 0.001
Copper (Cu) 34.4 15.0 10.8 89.3 35.9 15.2 7.100 78.1 0.322
Iron (Fe) 10.6 5.302 1.000 28.0 10.5 5.144 2.000 21.0 0.971
Lead (Pb) 2.897 1.969 0.190 7.250 3.251 1.839 0.430 6.990 0.076
Manganese (Mn) 0.918 0.525 0.088 2.505 0.987 0.575 0.129 2.188 0.394
Mercury (Hg) 0.139 0.119 0.011 0.716 0.114 0.085 0.011 0.469 0.146
Nickel (Ni) 0.469 0.339 0.020 1.660 0.403 0.368 0.020 1.590 0.015
Selenium (Se) 1.024 0.296 0.490 1.960 0.969 0.384 0.270 1.920 0.132
Strontium (Sr) 1.987 1.241 0.250 5.760 1.468 1.190 0.180 5.490  < 0.001
Vanadium (V) 0.047 0.031 0.006 0.130 0.042 0.028 0.007 0.125 0.236
Zinc (Zn) 103.3 43.1 26.0 203.0 92.7 37.4 20.0 214.0 0.047
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were higher in hair samples from the fishermen group than in 
the control group.

Although people are exposed to various amounts of arsenic 
through the air they breathe and drinking water, the main source 
of arsenic exposure is the consumption of food, particularly 

seafood [11]. Several studies have examined the relationship 
between individuals’ seafood consumption and arsenic levels. 
A study of 100 individuals from Egypt reported that the aver-
age weekly amount of fish consumed was correlated with hair 
arsenic levels [40]. Two other studies, one from Norway and one 
from Italy and Croatia revealed correlation between the amounts 
of fish consumed and blood arsenic levels, which are more likely 
to reflect recent exposure [11, 41, 42]. However, studies involv-
ing 52 individuals from Puerto Rico and 160 from Pakistan 
observed no difference in hair arsenic levels between groups 
with high frequencies of fish consumption and groups with low 
frequencies of consumption [43, 44]. Studies from Japan and 
Brazil investigating arsenic levels in nail and blood samples, 
respectively, from individuals consuming seafood at varying fre-
quencies also observed no association [45, 46]. These findings 
may be attributable to the studies being conducted in different 
regions. Since arsenic levels are higher in seafood from waters 

Fig. 2  Hair arsenic, chromium, 
nickel, strontium, and zinc lev-
els in the fishermen and control 
groups (µg/g)

Table 5  Cd, Hg and Ni 
levels according to some 
characteristics of fishermen and 
control groups (µg/g)

AM arithmetic mean, SD standard deviation

Element Fishermen Control p

n AM SD n AM SD

Cadmium (Cd)
   Nonsmokers/quitters 100 0.104 0.081 52 0.092 0.075 0.396
   Smokers 163 0.098 0.078 37 0.107 0.078 0.249

Mercury (Hg)
   No amalgam fillings 211 0.136 0.120 69 0.116 0.902 0.399
   With amalgam fillings 52 0.151 0.116 20 0.104 0.067 0.127

Nickel (Ni)
   Nonsmokers/quitters 100 0.463 0.358 52 0.329 0.293 0.009
   Smokers 163 0.473 0.329 37 0.507 0.438 0.693

Table 6  Correlations between participants’ monthly seafood con-
sumption and element levels (n = 352)

r correlation coefficient

Element r p

Chromium (Cr) 0.233  < 0.001
Nickel (Ni) 0.141 0.008
Selenium (Se) 0.120 0.024
Strontium (Sr) 0.157 0.003
Zinc (Zn) 0.115 0.031
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contaminated with arsenic, individuals who frequently consume 
such food will also have higher arsenic exposure [47]. In a study 
conducted in Turkey using the atomic absorption spectrometry 
method, the mean hair arsenic level in 94 participants in the con-
trol group was found to be 0.115 ± 0.006 mg/kg, which is similar 
to the control group in our study. It was found to be higher as 
1.81 ± 1.79 mg/kg in 95 metal workers with occupational expo-
sure [48]. In the present study, hair arsenic levels were higher 
among the fishermen who frequently consumed seafood com-
pared to the control group. This shows that individuals’ arsenic 
loads may increase in line with frequent consumption of seafood 
caught in the region. Although less toxic forms of arsenic are 

known to be found in seafood, with increased seafood consump-
tion, inorganic arsenic exposure, with proven adverse health 
effects, will also increase and pose a risk to health [11, 49].

Chromium exposure in the general population gener-
ally derives from food [50]. Due to its roles in glucose 
and lipid metabolism, chromium is an essential element 
for the human body, albeit at low levels [51]. However, 
high levels can lead to toxic effects [50]. The relationship 
between frequent seafood consumption and chromium lev-
els has not been sufficiently investigated. A study involv-
ing 350 participants from Tunisia determined no differ-
ence in blood chromium levels between a high-frequency 

Fig. 3  Correlations between participants’ monthly seafood consumption and heavy metal/trace element levels measured in hair samples
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fish consumption group and a low-frequency consumption 
group [52]. In the present study, however, hair chromium 
levels were higher in the fishermen group than in the 
control group. In addition, participant’s monthly seafood 
consumption was also positively correlated with hair chro-
mium levels. These findings suggest that frequent con-
sumption of seafood caught in the region may cause an 
increase in exposure to chromium.

Studies evaluating nickel levels in frequent consumers of 
seafood are very limited. In a study conducted in 423 chil-
dren and adolescents in Spain, urinary nickel levels were 
evaluated and it was found that the consumption of fresh 
fish in the week before the measurement and urinary nickel 
levels of those living in the intense industrial area Ria of 
Huelva were positively related. However, urinary nickel 
levels and consumption were found to be unrelated in those 
living in other less industrialized Andalusian regions, 
which were taken as the reference group [53]. This study is 
important in terms of showing that those who consume fish 
caught from contaminated waters in industrialized regions 
may face an increased risk of nickel exposure.

Another study on this subject evaluated blood nickel levels 
in 350 participants from Tunisia and reported no difference 
between high- and low-frequency consumption groups [52]. 
In the present study, hair nickel levels were higher in the fish-
ermen group than in the control group. The monthly amount 
of seafood consumed by the participants was positively cor-
related with hair nickel levels. This suggests that frequent 
consumption of seafood caught from this region may increase 
nickel exposure. Although food is the primary source of 
nickel exposure for humans, smoking is also known to have 
a significant positive effect on nickel levels [54]. When the 
hair nickel levels of the participants were stratified according 
to smoking status, it was observed that the mean hair nickel 
levels of fishermen and controls who smoked were higher 
and the difference in nickel levels between fishermen and 
control groups disappeared when only smoking participants 
were evaluated. However, hair nickel levels of nonsmoker/
quitter fishermen were still statistically significantly higher 
compared to nonsmoker/quitter controls.

Strontium is another element that can enter the human 
body through the food chain by accumulating in seafood 
[55]. A study from Italy involving 46 individuals determined 
no difference in serum strontium levels between a group that 
consumed fish frequently and a group that consumed fish 
less frequently [56]. However, research from China involv-
ing 452 women reported that the frequency of meat or fish 
consumption was positively correlated with hair strontium 
levels [57]. In the present study, hair strontium levels were 
higher in the fishermen group than in the control group. At 
the same time, these levels were positively correlated with 
the monthly amount of seafood consumed. It should not 
be forgotten that strontium can be absorbed into the body 

through various food and environmental sources. Our find-
ings suggest that seafood consumption can also contribute 
to exposure.

Zinc is an important essential element that needs to be 
present in the body at certain concentrations. However, it 
can have toxic effects at high levels [58, 59]. Some studies 
have reported an association between seafood consumption 
and zinc levels, while others have reported no such associa-
tion [34, 60–63]. In the present study, hair zinc levels were 
higher in the fishermen group compared to the control group. 
Frequent consumption of seafood may have caused this, but 
people can get zinc into the body from many different dietary 
sources [58]. Therefore, it is difficult to identify the source of 
the detected difference as seafood containing high amounts of 
zinc. The existence of numerous sources of exposure makes 
it difficult to establish a clear cause and effect relationship. 
In addition, frequent consumption may affect exposure since 
seafood is generally rich in zinc. However, the participants’ 
hair zinc levels were not above those reported in the general 
population and were far from being toxic [58].

Mercury is an element toxic to the human body and with 
high bioaccumulation and biomagnification potential [64]. It 
is also one of the elements whose association with seafood 
consumption has been most investigated. A large proportion 
of studies have reported higher hair mercury levels among 
individuals who frequently consume seafood [29, 30, 34, 
35, 65]. However, in our study, no significant difference was 
determined in terms of hair mercury levels between the fisher-
men and control groups. In addition, mercury concentrations 
in hair samples from the fishermen and controls were similar 
or lower than in the previous literature [64, 66]. This suggests 
that frequent consumption of seafood caught in the region has 
no significant effect on hair mercury levels. The release of 
mercury can also contribute to exposure to mercury among 
individuals with amalgam fillings [64]. Rates of presence of 
amalgam fillings were similar among the participants in the 
fishermen and control groups included in this study. Further-
more, no difference was observed when the groups’ hair mer-
cury levels were stratified on the basis of presence of amalgam 
fillings. Although the findings of this study differ from those 
reported in the literature, they are important in terms of show-
ing that the frequent consumption of seafood from the region 
causes no significant increase in mercury exposure.

Cadmium is a heavy metal that is highly toxic to humans 
[12]. Research has reported inconsistent results concern-
ing the association between frequent seafood consumption 
and cadmium levels [44, 62, 67–70]. No difference in hair 
cadmium levels was determined between the fishermen and 
control groups in this study. Smoking is also known to affect 
cadmium exposure. Since cadmium absorption from the 
lungs is greater than that from the gastrointestinal system, 
smoking can make a significant contribution to total expo-
sure [71]. However, when smoker and nonsmoker/quitter 
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participants were evaluated separately, hair cadmium lev-
els were found to be similar between fishermen and con-
trol groups. All these findings suggest that the frequent 
consumption of seafood did not contribute significantly to 
participants’ exposure to cadmium.

Lead is a toxic heavy metal with no known function in 
the human body [71]. Several studies have investigated the 
relationship between individuals’ seafood consumption and 
lead levels, with some reporting an association and others 
not [34, 44, 62, 67, 72, 73]. No difference was found in hair 
lead levels between the two groups in the present study. 
Humans can be exposed to lead through various environ-
mental sources. Although it is difficult to identify the source 
of that exposure, the findings of the present study suggest 
that frequent consumption of seafood caught in the region 
results in no additional exposure.

Copper and selenium are essential elements for human 
metabolism [74, 75]. The results of studies assessing the 
relationship between the seafood consumption and levels of 
these elements are inconsistent [42, 60, 61, 63, 72, 76–79]. 
Similar to zinc, since these two elements can be taken into 
the body through various foods, dietary content can affect 
exposure levels [80, 81]. However, the frequent consumption 
of seafood containing high levels of these elements can result 
in increased exposure. In our study, no difference was found 
between the fishermen and control groups in terms of copper 
levels. There was an increase in selenium levels as the amount 
of seafood consumption increased, but this increase was not 
enough to create a significant difference between two groups.

The relationships between seafood consumption and 
antimony, iron, manganese, and vanadium levels have been 
the subject of limited investigation for each element, and 
no increase was found in the levels of any element due to 
seafood consumption [46, 61, 72, 79, 82–84]. Similarly, in 
our study, there was no difference between fishermen and 
controls in terms of hair levels of these elements.

Conclusion

This study, conducted in four provinces bordering the Sea 
of Marmara, found increased levels of arsenic, chromium, 
nickel, strontium, and zinc exposure in fishermen who 
consumed seafood frequently compared to controls who 
consumed seafood less frequently. Considering that fish-
ermen consume seafood they catch from the Sea of Mar-
mara, it has been revealed that the pollution in seawater in 
terms of various elements can reach individuals through 
the consumption of seafood, creating exposure and caus-
ing health risks. This study is particularly important in 
that it involved the analysis of numerous elements in hair 
samples indicating chronic exposure.

The Sea of Marmara, which is located in a region with 
intensive industrial production, needs to be evaluated in 
terms of pollution, especially the elements for which risk 
is determined, and necessary precautions should be taken. 
It will be useful for a system to be established involv-
ing continuous and systematic monitoring of elemental 
levels in seawater, seafood and humans. It will also be 
highly beneficial for public health for the system to be 
established to detect the changes in element levels in the 
early stages and to take appropriate action quickly when 
required. There is an urgent need for similar studies to be 
conducted in other regions with a high risk of contamina-
tion. There is also a need for studies in which all of the 
different variables such as air, water, food, and drugs that 
may affect exposure are evaluated together.
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